
 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

 Volume 11 Issue 01 January 2024

36

Architectural shift in compute environment for

Satellite data processing
[1] Gaurav Gupta, [2] Pradeep C, [3] Murali Krishna ANSV, [4] G Prasad, [5] Manju Sarma

[1] [2] [3] [4] [5] National Remote Sensing Centre, ISRO

Corresponding Author Email: [1] gaurav_gupta@nrsc.gov.in, [2] pradeep_c@nrsc.gov.in, [3] muralikrishna_ansv@nrsc.gov.in,
[4] prasad_g@nrsc.gov.in, [5]manjusarma_s@nrsc.gov.in

Abstract— In the present era of rapid software development, selecting the appropriate architectural approach is important in building

flexible, reliable, scalable and maintainable applications. The prominent architecture prevalent primarily in recent years is bare metal

compute infrastructure. This paper aims to understand the monolithic approach developed in NRSC and proposes a new approach for

data acquisition, processing and work flow modules by instituting a containerized environment and various level 2 and 3 microservices in

air-gapped environment in contrast to traditional monolithic approach. Resource utilization of systems in monolithic architecture and in

containerized environment with statistics of improved Turn-around Time of processes running in container orchestrated platform in

contrast to monolithic architecture is presented in the paper. Meeting the goals of establishing and maintaining a high available and load

balanced containerized environment using customized configuration in air gapped network constitute a significant challenge.

Index Terms— ADP, API, DPWFM, FRED, IMGEOS.

I. INTRODUCTION

National Remote Sensing Centre (NRSC) is the premier

organization, under ISRO, Dept. of Space which is involved

in ground segment activities related to Remote Sensing

Satellite missions. NRSC is primarily responsible for the data

reception, data product generation and data dissemination.

These operations are carried out using the bare metal

computers with different configurations.The three major

processing elements are Data Acquisition, Data Processing

and Data Dissemination as shown in Figure 1 and this

segment explains about the existing IT Infrastructure which

is monolithic in deployment and the challenges involved in

managing IT Infrastructure.

Figure 1. IMGEOS Workflow Chain

Compute, storage and network infrastructure at IMGEOS

was installed and integrated as a typical on-premises solution

for organization’s requirements. The Station Work Flow

Manager system starts with the scheduling of ground station

sub-systems for all satellite orbits at all the ground stations

maintained by NRSC from the Pass Programming System

(PPS) on a daily basis. The Data Ingest system on receiving a

work-order from SWFM, acquires satellite data and ingests

the RAW data at IMGEOS ground station into the shared

storage path and updates the data ingest status to the SWFM

controller daily. To carry out Data Ingest eight servers are

configured. The ADP system performs level-0 processing

and generates Orbit Attitude and Time (OAT) File, Framed

RAW Extended Data (FRED) and Ancillary Data

Information File (ADIF) and twelve servers are configured.

The level 0 processed output is fed as input to the Data

Products Generation System (DPGS) to carryout advanced

levels of Image processing and data product generation. To

carry out the operations of DPGS there is a main controller

system known as Data Processing Workflow Manager

(DPWFM). The DPWFM floats the work-order files into the

data production chain by passing the segregated work-orders

to the respective master DP scheduler configured in

Master-Slave configuration. The finished products are then

subjected to quality check before dissemination. To carry out

processing twenty five servers are configured. In total around

hundred servers are configured and maintained to support all

the operations of IMGEOS chain. The utilization of the

available infrastructure is the key measure to work on

resource optimization. To optimize the resources at IMGEOS

a solution to build containers is proposed in this paper that

improves the resource utilization and also simplifies

manageability of these huge numbers of systems.

Containerization of ground segment data processing software

will lead to optimal utilization of infrastructure, better

resource management and application deployment. To

deploy containerized applications, Kubernetes cluster is built

in air gapped test environment at IMGEOS.

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

 Volume 11 Issue 01 January 2024

37

Significant differences of the two mainstream system

architecture approaches i.e. monolithic and mircoservices

architecture, investigates the resource utilization while using

monolithic approach in IMGEOS and determines efficient

containerized system architecture suitable for IMGEOS. An

open source kubernetes orchestration platform is established

in a test network at IMGEOS with load balancer and high

availability feature. Kubernetes is a portable, extensible,

open source container orchestration platform for managing

containerized workloads and services designing a robust

air-gapped system, identifying essential and optional

component, and the processes needed to operate it. The paper

also presents the architecture of resulting Kubernetes

infrastructure, discusses the various design decisions and

challenges encountered as well as touches upon the processes

complementing the system set-up [1]. Building this offline

orchestration environment will enable the application

developers to host their microservices in a robust, Load

balanced and high available environment within IMGEOS

data network. Various developer favorable features such as

horizontal/vertical pod auto scaling, resource alerting and

visualization, tracking resource metrics statistics, etc. have

been introduced to the system

II. MICRO SERVICE DEPLOYMENT IN IMGEOS

There are various container orchestration platforms

available online in which Kubernetes is chosen and

implemented in a test network at IMGEOS. The

microservices architecture is method which breaks down a

software application into a collection of smaller independent

services that communicate over well-defined light-weight

APIs [2]. Such architecture are agile and allows application

to scale easily and develop faster. Each service covers its own

scope and has specific functionality. Such services can be

independently deployed, scaled and updated and maintained

as per user requirement for a specific function.

Thus the software running in different domains such as

ADP, DPS and PQC are proposed to run in containerized

microservices system. Such architecture will allow the

servers to work as shared pool of resources which will permit

different work centers process to run on same sever thus

optimizing the resource utilization and make efficient use of

infrastructure. A Kubernetes cluster consists of a set of

worker machines, called nodes that run containerized

applications was built. Every cluster has at least one worker

node. The worker node(s) host the pods that are the

components of the application workload. The control

plane manages the worker nodes and the Pods in the cluster.

In production environments, the control plane usually runs

across multiple computers and a cluster usually runs multiple

nodes, providing fault-tolerance and high availability. Three

high end servers are incorporated viz. two systems with 32

cores CPU and 512 GB RAM, one system with 16 core CPU

and 128 GB RAM. Upon these machines seven VMs were

built with three master nodes, two Load balancers VMs for

high availability and 2 worker node VMS. Kubernetes brings

greater reliability and stability to the container-based

distributed application, through the use of dynamic

scheduling of containers. But Kubernetes cluster should stay

up when a component or its master node goes down.

Kubernetes High-Availability is about setting up Kubernetes,

along with its supporting components in a way that there is no

single point of failure. In a single master cluster the important

component like API server, controller manager lies only on

the single master node and if it fails one cannot create more

services, pods etc. However, in case of Kubernetes HA

environment, these important components are replicated on

multiple masters (three masters in IMGEOS environment)

and if any of the masters fail, the other masters keep the

cluster up and running. Three master nodes working in

active–active configuration are configured as shown in

Figure 2. By providing redundancy, a multi-master cluster

serves a high available system for end user [3]. To provide

load balancing for Linux system and Linux based

infrastructure keepalived is used. Keepalived implements a

set of checkers to dynamically and adaptively maintain and

manage a load-balanced server pool according to their health.

Two RHEL VMs are created to work as Load Balancer. Over

each Load balancer VM a keepalived daemon and a HAproxy

daemon runs which provides uses VRRP (Virtual Router

redundancy Protocol) protocol creating virtual routers that

bind to a floating, virtual IP address that can be shared

between an active and standby HAProxy instance.

Figure 2. Kubernetes Architecture in IMGEOS

III. CHALLENGES ENCOUNTERED DURING

IMPLEMENTATION.

Redhat enterprise virtualization platform which uses

Redhat Enterprise Linux and KVMs has been used. Built

networking bridge for VM-base machine communication.

After literature survey and multiple iterations of testing and

evaluation RHEL 7.5 and above Operating System was

decided as suitable for Kubernetes installation in airgapped

environment.

https://kubernetes.io/docs/concepts/architecture/nodes/
https://kubernetes.io/docs/concepts/workloads/pods/
https://kubernetes.io/docs/reference/glossary/?all=true#term-control-plane
https://kubernetes.io/docs/reference/glossary/?all=true#term-control-plane

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

 Volume 11 Issue 01 January 2024

38

There are various open source container runtime engine

available such as docker, containerd, runc, CRI-O, etc. to run

container application. Initially docker was opted as it’s a

popular open source tool in DevOps and provides large

community support for bugs and errors. After exhaustive

testing and assessment of various packages and features, it

was observed that docker does not extend support to latest

versions of Kubernetes orchestration platform features and

versions. Thus containerd was inculcated as the container

runtime engine. But because of lack of community support

and one stop solution, various difficulties were faced while

installing the runtime engine. Configuration specific to

air-gapped environment was carried out. The runtime service

(runc) was customized as per the proper version and

networking of the Kubernetes architecture in offline

environment. Specific containerd configuration plugins were

selected to facilitate setting up container runtime over the

host OS in all the cluster nodes.

Kubernetes supports Container Networking Interface

plugins for cluster networking. Initially Flannel plugin was

chosen and thoroughly tested in offline environment. But

after configuring it, the underlying container runtime failed to

load the CNI plugin required to implement the Kubernetes

network. Similarly weave CNI was also tested but containerd

runtime communication with Kubernetes using the plugin

was not established. Calico CNI, an open source networking

and network security solution for Kubernetes was finally

added. It provides highly efficient pod networking which

uses overlay networking options for air gapped application

deployments. Three calico components were added 1.felix

which provides routes and ACLs, and other desired

connectivity for the endpoints on host. 2.bird it distributes

Routing information to peers on the network for inter-host

routing using BGP protocol and.3.confd it monitors calico

datastore and dynamically creates BIRD configuration files

as per updates in datastore.

Kubernetes DNS service is required for service discovery

within the cluster. Additional Kubernetes plugin coreDNS

was configured to handle all queries in local cluster zone and

connect to Kubernetes in-cluster. Customised coreDNS

plugins were used to enable service discovery. To enable

IMGEOS SAN file system access to the pods, file systems

were configured on the worker nodes [4]. Customised

deployment workloads were created to mount SAN file

system to the pod. Rigorous I/O operations were conducted

on file system using pod container and thorough testing was

carried. Pods were successfully able to read and write on the

file system.

IV. TESTING AND PERFORMANCE COMPARISON

To analyze the working of monolithic architecture, an 8

core virtual machine with 8GB RAM was configured with an

opensource geospatial data manipulation software library

GDAL which is used for handling raster and vector

geospatial data formats. Few basic arithmetic operations

were performed by using the gdal_calc library and the

corresponding resource utilization was captured. Single

instance of the process as well as multiple parallel instances

were executed and it was observed that turn around time

(TAT) for single instance is 1min 13sec consuming 1 core

(12.5%) of CPU and 540 MB of Memory (Figure 3). Running

8 parallel instances of same process resulted in average TAT

of 1 min 16 sec as all 8 cores (12.5% CPU per process) were

utilized uniformly consuming 540 MB RAM on an average

(Figure 4). Till this point the system allocates resources to the

processes such that each process can consume memory and

CPU to its maximum potential leading to minimal TAT. But

when the workload was increased and 14 parallel instances

were executed, the average TAT increased to 7 min 38 sec

with average CPU utilization of 0.4 core (5.2%) and 516 MB

of RAM (Figure 5). Thus it is concluded that when the

workload is increased beyond a threshold, due to limited

resources the process TAT gets affected. Additionally, it is

observed that the resources of peer systems are idle but they

cannot be utilized as there is no mechanism for resource

sharing. This leads to inefficient resource utilization of

systems in the infrastructure.

Figure 3(a)

Figure 3(b)

Figure 3. Single GDAL process statistics in monolithic

environment. a) CPU utilization b) Turn-around Time

With the aforementioned observation it is understood that

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

 Volume 11 Issue 01 January 2024

39

the turn-around time of a process increases as the number of

processes increase because the resources are limited and

shared uniformly within the server. In IMGEOS, various

levels of data processing systems say DIS, ADP, DPSG, etc.

are allocated a set of servers in which, at times, resources of

few systems are consumed to their threshold while peer

system remain idle. Thus the mission critical processes are

not able to utilize resources spread across the systems, this

directly affects their performance by increasing the TAT of

different processes.

Figure 4(a)

Figure 4(b)

Figure 4(c)

Figure 4. Statistics of eight parallel GDAL process in

monolithic environment. a) CPU utilization b) Turn-around

Time

Figure 5(a)

Figure 5(b)

Figure 5. Statistics of fourteen parallel GDAL process in

monolithic environment. a) CPU utilization b) Turn-around

Time

V. GDAL MODULE EXECUTION IN CONTAINER

ORCHESTRATED PLATFORM.

In the test k8s architecture at IMGEOS, the GDAL

software was installed as a container package on the two

worker nodes which were configured with 8 CPU cores and

8GB RAM each. A deployment workload was built

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

 Volume 11 Issue 01 January 2024

40

consisting container image of GDAL software and other

networking and storage components required for the pods to

run. The deployment was designed to perform arithmetic

operations on CARTOSAT-2E TIFF files by running

multiple GDAL pods across the cluster. In contrast to the

native system, when a kubernetes workload deployment with

14 replica-sets of the GDAL container image was executed,

14 parallel pods were spun by kube-controller with 7 pods on

each worker node as per resource available on the worker

nodes. In this case the average Turn-around time for a pod is

observed to be 17 sec (Figure 6b) with per pod resource

utilization of 715 milli core CPU and 431MB RAM (Figure

6a).

Thus the resources available on two worker nodes can be

utilized efficiently and multiple processes can consume

resources spread across systems by consuming idle resources

of peer system in the cluster. Whenever the pod completes its

execution on a worker node, the resources allocated to it are

released and are available for use by other pods on peer

worker node. This leads to optimal resource utilization of

systems in the cluster which ultimately helps in quicker

execution of the container in the pods. Hence the

performance is significantly improved as the turn-around

time is reduced considerably.

VI. FUTURE SCOPE & CONCLUSION

The future scope of work involves adding features like Log

Management, Ingress Controller, Security Hardening,

Centralized Repository etc. for proactive management of the

kubernetes cluster. These features will enhance the capability

of air-gapped IMGEOS kubernetes cluster. The aim of the

paper was achieved by illustrating the difference in working

of monolithic architecture and containerized architecture at

IMGEOS and discussing the advantage of containerized

architecture on the basis of resource utilization as well as the

turn-around time of processes. After thorough understanding

of resource utilization of systems in monolithic architecture

as well as in containerized environment, it was learned that in

a monolithic environment when a system is overloaded with

multiple processes, because of limited availability of

resources (CPU and Memory) on the system, each process is

allocated fewer CPU and memory which directly affects the

turn-around time of the processes. Also, the system is not

able to utilize the idle resources available on its peer. Thus it

causes inefficient resource utilization across the systems.

While using container orchestrated platform, statistics show

an improved Turn-around Time of the processes as shared

pool of systems (aka cluster) allow idle resources on peer

systems to be consumed when process requests are

overloaded on the cluster. This significantly enhances the

resource utilization capability of the systems in cluster.

containerized mircoservices in IMGEOS network with

significantly improved resource utilizing architecture.

Figure 6a

Figure 6b

Figure 6. Statistics of GDAL Container deployment

executing 14 parallel pods in Kubernetes Environment. a)

Resources utilization and deployment statistics of pods. b)

Description of a pod stating the Turn-around Time of a pod.

REFERENCES

[1] Kubernetes Website: https://kubernetes.io/docs/concepts/

containers/.

[2] Tigera Operator: https://docs.tigera.io/calico/latest/

reference/installation/api#operator.tigera.io/v1.APIServr.

[3] Grzegorz Blinowski, Anna Ojdowska, Adam Przybyłek,

“Monolithic vs. Microservice Architecture: A Performance

and Scalability Evaluation”, IEEE Access, Vol. 10, pp.

20357-20374, 2022.

[4] Kubernetes for Airgapped: https://kubernetes.io/blog/

2023/10/12/bootstrap-an-air-gapped-cluster-with-kubea/

